The Alaskan Caver [ISSN 0735-0481] is the intermittent publication of the Glacier Grotto of the National Speleological Society. Copyright © 1992 by the Glacier Grotto. Materials not copyrighted by individuals or by other groups may be copied by other NSS Publications provided credit is given to the author and The Alaskan Caver and a copy is sent to the Editor [address below]. Back issues are available from the President for $2 each. Send articles, letters, news items, announcements, trip reports, cave surveys, drawings, photographs, and so forth directly to the Editor. Opinions expressed within are not necessarily those of The Alaskan Caver, the Glacier Grotto, or the NSS.

Membership is open to all interested in Alaskan cave discovery, exploration, description, survey, mapping, photography, hydrology, morphology, biology, geology, history, speleogenesis and other speleoid processes, conservation, management, adventures, and the fellowship of Alaskan cavers. Annual dues are $15 for individual or $20 for family membership. Add $8 to dues if overseas or mail postage is preferred over surface. Institutional subscriptions are $20 per volume (six issues).

Dues are due on January 1 and are sent to the Treasurer [address below], payable to Glacier Grotto. Those joining for the first time between October 1 and December 31 will be considered paid through the following year. Dues status is indicated on the mailing label. Meetings are held in Anchorage, Fairbanks, and Ketchikan; see the back page for information regarding meeting times and locations.

Officers

<table>
<thead>
<tr>
<th>Officer</th>
<th>Name</th>
<th>Address</th>
<th>City</th>
<th>ZIP</th>
<th>Home</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>President</td>
<td>J Rockwell, Jr</td>
<td>2944 Emory St</td>
<td>Anchorage</td>
<td>AK 99508</td>
<td>277-7150</td>
<td>277-7150</td>
</tr>
<tr>
<td>VP</td>
<td>Northern</td>
<td>Mike Mauser</td>
<td>Fairbanks</td>
<td>AK 99709</td>
<td>456-6953</td>
<td>452-1414</td>
</tr>
<tr>
<td>VP</td>
<td>SCentral</td>
<td>Rachel Mays</td>
<td>Anchorage</td>
<td>AK 99508</td>
<td>276-0138</td>
<td>276-0138</td>
</tr>
<tr>
<td>VP</td>
<td>SEastern</td>
<td>Kevin Allred</td>
<td>Haines</td>
<td>AK 99827</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Secretary</td>
<td>Jack Massie</td>
<td>1853 Bartlett Dr</td>
<td>Anchorage</td>
<td>AK 99507</td>
<td>562-0417</td>
<td>349-8587</td>
</tr>
<tr>
<td>Treasurer</td>
<td>W Harvey Bowers</td>
<td>305 S Bartlett Ctr</td>
<td>Wasilla</td>
<td>AK 99654</td>
<td>376-2294</td>
<td>373-2247</td>
</tr>
<tr>
<td>Editor</td>
<td>Curvin Metzler</td>
<td>P O Box 100738</td>
<td>Anchorage</td>
<td>AK 99510</td>
<td>333-8766</td>
<td>786-1804</td>
</tr>
<tr>
<td>NCA Rep</td>
<td>Dave Klinger</td>
<td>P O Box 537</td>
<td>Juneau</td>
<td>AK 99826</td>
<td>548-5480</td>
<td></td>
</tr>
<tr>
<td>Conserv'n</td>
<td>Jim Ferguson</td>
<td>P O Box 20908</td>
<td>Anchorage</td>
<td>AK 99802</td>
<td>465-5365</td>
<td></td>
</tr>
<tr>
<td>Prog Chair</td>
<td>John Jansen</td>
<td>7814 Raymar CIR</td>
<td>Anchorage</td>
<td>AK 99518</td>
<td>344-4402</td>
<td>344-4402</td>
</tr>
<tr>
<td>SEast Chair</td>
<td>Gary Sonnenberg</td>
<td>1377 Pond Reef Rd</td>
<td>Ketchikan</td>
<td>AK 99901</td>
<td>247-1559</td>
<td>247-1559</td>
</tr>
</tbody>
</table>

(All telephone number area codes are 907, Alaska, unless otherwise specified.)

Formation in El Capitan Cave, Prince of Wales Island. Photo by Curvin Metzler.

Table of Contents

- Preliminary Report #39: Eagle's Roost Cave 3
- Preliminary Report #56: Log-Spanned Shaft 5
- Preliminary Report #57: Hidden Shaft .. 5
- Preliminary Report #63: Sill Cave .. 6
- Preliminary Report #66: B & B Cave ... 7
- Preliminary Report #68: Thrush Cave .. 8
- Trip Report: Some Winter Wren Area Caves 10
- Preliminary Report #58: Winter Wren Cave Area 11
- Trip Report: Atop El Capitan Peak ... 14
- Preliminary Report #42: El Capitan Pit 16
- Preliminary Report #48: Fault Contact Pit 18
- Preliminary Report #76: Blowing in the Wind Cave 19
Eagle's Roost Cave
Prince of Wales Island
Preliminary Report #39
by Kevin Allred
October 24, 1991

Description

Eagle's Roost was reported by Rich Reeves of the Forest Service while doing field work in the area. The impressive six-foot-wide and 20-foot-high entrance to this cave is located at the base of a high cliff of Heceta Limestone. A stream estimated at a minimum of 200 gallons per minute with a temperature of 3.5°C (Win Wright) rushes from the cave. During wet periods, its volume is greatly increased. Much of this horizontal cave is formed along faults, and as a result, the cross section is usually vertical or nearly so. Many leads are high in these fissures and very inaccessible.

The western trending trunk passage contains the main stream. Scallops are prevalent and old levels can be seen where the high cross section bends out. Some basaltic dike fragments are mixed in the clastic debris of the stream bed. This main passage ends at a sump after some 200 feet and 33 feet above the entrance. It is likely that the rocky fill between the sump and entrance is responsible for the damming up of the stream, for the cave continues underwater. The ceiling continues underwater at an angle of about 20 degrees as far as one can reach without becoming submerged.

About 150 feet from the entrance, a cross fissure is encountered which extends to the north and south. Small streamlets issue from both fissures. The north rift (fissure) extends some 80 feet. Along the way are seen at least four different phreatic levels where the fissure has been widened. Some nice speleothems of soda straws and stalactites are in this area. At one pitch a rope is needed to safely negotiate the rift which ends in a small dirt floored chamber. Here, bat guano is concentrated under ceilings or walls covered with popcorn which provides better roosting surfaces. From this room a small passage heads northeast to a twelve-foot drop and a pinching north-south trending fissure.

The keyhole shaped south rift extends 120 feet, with the last 40 feet being very wet and narrow. About 80 feet from the main passage, a strong warmdraft (probably from the nearby surface) blows from a large canyon passage which heads to the west. The unseen ceiling is at least 40 feet high. Eagles Roost has a total of 1299.9 feet of passage surveyed and is 132.3 feet deep.

Biology

The bat guano mentioned above is the largest deposits I have seen thus far in Alaskan caves. As usual, no live bats were noted. The stream was not checked for aquatic life.

Hydrology

It is not known where the majority of cave water originates. Dye was dumped in Blowing in the Wind Cave high on the mountain above, and traps were placed in the stream this summer; but results are not yet available.

Management Recommendations

This cave contains geological, hydrological, mineralogical, recreational, and biological importance. The chamber with the guano should be checked in the winter for hibernating bats. I suggest limiting timber harvesting near the entrance for aesthetic reasons. A harvest unit is adjacent to the cave. This cave location could be shared with more responsible individuals. The delicate speleothems are in a somewhat difficult and remote spot. A handline is needed to reach the sump.

\[\text{December 1992 Volume 12 Number 6 The Alaskan Caver page 3}\]
Description

Located in Heceta Limestone, this is one of many caves in the same harvest unit. It lies within one of three no-cut buffers and was first identified by Betty Wilt while laying out the unit to protect its karst resources. A ten-foot climb down at the bottom of the entrance sink leads to the top of a 30-foot rope drop. A few feet beyond the bottom of the drop the passage becomes too tight to continue. Some air movement was noted here.

Management Recommendations

The currently proposed buffer appears adequate; it would be wise to withhold the location from the general public because of nearby delicate Thrush Cave.

Description

Hidden Shaft is located within a no-cut buffer placed to protect the caves therein. Despite its name, this cave may be entered via a steep slope without the aid of a rope. It contains a few soda straws and stalactites, and black flowstone is also present. Its total length is 110.5 feet and its depth is 59.5 feet.

Management Recommendations

The currently proposed buffer appears to be adequate. The cave location should be restricted from the general public because of the close proximity of delicate Thrush Cave.
Sill Cave
Prince of Wales Island
Preliminary Report #63
by Kevin Allred
November 5, 1991

Description

Sill Cave was first discovered by Betty Wilt of the Forest Service. This emergence cave was formed where water seeped from the contact between the overlying Heceta Limestone and an underlying basalt sill. At first glance the cave appears to end soon in breakdown or a sump, but more aggressive advance leads through a low passage along a pool and into a network of passages. At least one ceiling is the underside of a sill. All passages either sump, are chocked, or are too tight, except one at the back of the cave. Here the passage has evolved into a vertical vadose fissure. Mark Fritzke reports that it continues into a very tight, unexplored eight-foot drop which opens up below. The fissure issues air flow. It is possible that the stream originates from Contact Cave higher on the mountain.

Management Recommendations

Sill Cave is included in a no-cut buffer with Thrush Cave. Continued protection from logging and road building activities is recommended. It would be wise to withhold the location of Sill Cave from the general public because of the close proximity of nearby and delicate Thrush Cave.

SILL CAVE
PRINCE OF WALES ISLAND
ALASKA

Suums and tace survey: July 20, 1991 by F. Grady and M. Fritzke
Map drafted by Kevin and Carlene Allred
Description

Discovered by Betty Wilt, B & B Cave begins as an impressive ten-by-ten-foot entrance in the side of a large insurgence sink. The rock is Heceta Limestone. With the exception of two short crawlway side passages, the cave consists of a single linear walking passage leading downwards to a sump. The sump is notable for its plumbed depth of 65 feet. Total depth of the cave to the sump is 62.4 feet and surveyed length is 151.4 feet. All accessible passage has been mapped. An un-promising high lead to the left of the terminal sump would require aid techniques to enter. Biology is unknown in the cave.

Management Recommendations

The present no-cut buffer should be adequate for protection of the cave from logging and road building impacts. It would be wise to withhold the location of the entrance from the general public, however, because of the close proximity of nearby and delicate Thrush Cave.

Thrush Cave
Prince of Wales Island
Preliminary Report #68
by Kevin Allred
November 6, 1991

Description

Located within a no-cut buffer in a timber harvest unit, 100 foot long Thrush Cave is one of the most beautiful and fragile caves in Alaska. It was discovered by Betty Wilt of the Forest Service while preparing the harvest unit for sale. The cave was named by Jim Baichtal, who found an aggressive nesting Thrush at the sinkhole entrance. Thrush Cave has geological, mineralogical, and biological significance.

Mineral Deposits

The cave has very extensive deposits of moonmilk on most walls, ceilings and floors. In many places the moonmilk resembles cauliflower and also takes the form of rimstone, flowstone, stalactites, and stalagmites. At the very bottom is a pool with beautiful formations of soda straws, stalactites, and flowstone. Throughout the cave, the ever-present moonmilk is easily damaged just by the process of traversing the passage.

Biology

Besides moonmilk, which probably contains bacteria, numerous fungus gnat larvae were found inside the entrance. These are still not keyed to species.

Geology

The ceiling of Thrush Cave is a basalt sill. Fractures in the sill have allowed moonmilk to build up even on the basalt. Many blocks of the sill have collapsed to litter the floor some time ago, judging from moonmilk deposits thereon. It is possible that this cave is sandwiched between the ceiling sill and non-carbonate floor. The cross section of the passage suggests it is bedding controlled. It is thought that Thrush Cave is hydrologically associated with Sill Cave just down the hillside. Total surveyed passage is 125.7 feet and total depth is 36.9 feet.

Management Recommendations

Even with great care, each visit to this cave produces more irreplaceable damage to the soft moonmilk. For this reason, the location should be restrict-
ed from the general public and recreational cavers. The cave should only be accessed for scientific reasons. The no-cut buffer should be adequate to protect the cave from logging activities; however, there are reports of blasted rock fragments inside the entrance, arguing for larger cave buffers in the future. It is not known what other damage has occurred deeper within the cave.
Some Winter Wren Area Caves
Trip Report
by Carlene Allred

Not far from Prince of Wales Island Road #20 is a group of intake cave entrances that we call the Winter Wren Area. The area is named after the first cave of the group to be explored. Winter Wren Cave was first discovered by Jim Baichtal, and was named for the bird in the entrance. It was explored by Jay Rockwell and Fred Grady in July, 1991, on the same day the two found another entrance they named "T" Canyon Cave. Since it required a rope, they did not enter it.

Later, on July 30, Jim Baichtal took me to the area to check out another opening that he knew about. We crawled down a small hole into a room below, which was about ten feet in diameter. The cave continued as a narrow canyon plugged with rocks. A faint current of air blowing in our faces encouraged us to do some digging. Soon I was able to slip on into the slot, and jammed myself around a jagged corner. Before me the tight canyon dropped into a larger stream passage below. I tried to chip at a protruding point barring the way, but could not get it to break. Someone very thin and brave is needed to progress further in here; but since I am neither, I gave up. We set a survey point as far down as we could, and Jim pulled me back out.

Next, we decided to make a surveyed connection between this cave and Winter Wren Cave along the surface. After only a couple of short shots, we happened upon a canyon five to eight feet wide and barring our way. It belled out below into a deep blackness. We tied our rope onto some tree roots and dropped down into the upstream entry of the gorge. There was an eight-foot drop, and then a ten-foot drop, all in a small waterfall. We found ourselves standing on a wide, flat bedrock floor in the bottom of a very interesting box canyon. The fluted walls rose upwards to a narrow strip of daylight above. The sun's rays passed between the leaves of devil's club plants that waved above us in the breeze.

We named the place Devil's Canopy. Long beards of moss hung down towards us like large stalactites, and the clear stream followed the clean bedrock floor on into total darkness where the canyon went underground. We surveyed our way inside and found ourselves following a narrow, meandering vadose canyon. We soon came to a junction room where a narrow canyon entered from above. This canyon above us was the very place where Jim and I had been digging earlier today! We tied in to the former survey point which we could see from below.

Another lead took us far above into an old phreatic level atop the vadose stream canyon. We were inside an ancient looking room about 30 feet in diameter and ten feet high. Bat guano lay here and there; and another stream channel entered from above, but this was too small to enter. The air current led us on into a belly-crawl passage heading northeast. We had to move a few rocks to get through it. Soon, we emerged into another room, only a little smaller than the first one. The ceiling sported a couple of soda straws. The crawl continued eastward; but we ran out of time, so we turned back.

Two days later, I returned with
Glen Coville and we completed the surface survey to Winter Wren Cave. Once finished, I took him into Devil’s Canopy Cave, and we continued exploring where Jim and I had left off. We surveyed our way through a small, downward trending, winding passage containing some dark colored aragonite popcorn here and there. We emerged into a miserable low, wide room from where we could hear running water from below. We found a pit that dropped down to the streambed, but needed a rope.

Next, we backtracked and went back down to stream level. Continuing downstream, we encountered several short drops and entered another junction room. There were several high leads with small amounts of tight keyhole passages, which we investigated. One high lead we could not reach. The main canyon continued on as a tight hourglass shape and very wet. We set our last station here (B15). We were hoping that the phreatic level high above us would bypass this constriction.

On August 2, Jay and Glen returned to the area to do some surface surveying. Jay located "T" Canyon Cave and it turned out to be none other than Devil’s Canopy! The latter name is the one that stuck.

On August 3, I returned with Glen, Eva Kargard, and Julie Riber, and we set out to check out an entrance that Glen had found the day before. Glen had high hopes that this cave would turn out to contain the "Mother of All Rivers" in the area. I anchored the rope and dropped down into the sinkhole. We could hear a fair sized stream below us.

We were standing on top of a jumble of rocks wedged between the canyon walls, and to continue the drop I had to set a rebelay off a wall nubbin to avoid some instability. I rappelled down into a passage much like the stream passage in Devil's Canopy Cave. It soon narrowed to a very tight and jagged walled meandering slot. Only a very thin person will be able to enter this one. When I reported the sad news to those above me, Glen named the place Dead Mother Cave.

Afterwards, we all went back into Devil’s Canopy Cave to push it further. We brought in a rope and rigged the pit in the furthest upper-level room. We were hoping that this would bypass the hourglass shaped place in the stream passage below. We all rappelled down to the stream level, only to find ourselves still looking at the hourglass. We had rappelled down from the "high lead" that we hadn't been able to get to from below.

Perhaps a very determined caver can penetrate the hourglass, but for now the cave has defeated us and the "Mother of All Rivers" is yet to be discovered.

Winter Wren Cave Area

Winter Wren Cave
Devil's Canopy Cave
Junco Cave
Dead Mother Cave
Prince of Wales Island
Preliminary Report #58
by Kevin Allred
November 5, 1991

Introduction

The forested Winter Wren Cave Area was identified as "uvalas" in aerial photograph interpretation by Carlene Allred several years ago. In 1991, Jim Baichtal entered the area on foot, independently, and discovered at least
one cave entrance. Further discoveries were made during the 1991 Tongass Caves Project, Prince of Wales Island Expedition (POWIE V). Four caves have now been identified and surveyed, namely: Winter Wren Cave, Devil's Canopy Cave, Junco Cave, and Dead Mother Cave. All are formed in fairly level terrain in Heceta Limestone. Many passages have been greatly modified by vadose action. There may be other yet undiscovered caves nearby.

Winter Wren Cave

The large 15-foot-deep sinkhole entrance to Winter Wren Cave was found by Jim Baichtal. A steep, rubble floored passage heads down to the northeast to a short side passage and large terminal room containing a pool. The terminal room and side passage appear to be in line with Junco Cave and a surface solution channel nearby, and thus either joint or fault controlled (see map). Interestingly, the surface channel flows towards Junco and not the deeper Winter Wren. Total length and depth is 69.3 feet.

Devil's Canopy Cave

Devil's Canopy Cave is, so far, the longest cave found in the Winter Wren Cave Area, with its surveyed footage at 326.2. Devil's Canopy was first discovered by Jay Rockwell and Fred Grady, then "re-discovered" by Jim Baichtal. The cave was named after the spectacular entrance which has moss hanging down and a canopy of devil's club above. There were coral fossils noted in the entrance sinkhole.

A streamlet follows a canyon-like vadose passage eastwards to a point where one can climb up into a gallery. Two more entrances to the cave connect through a small constriction in the southern wall of the gallery. From the gallery, a stoopway heads east and then north with various "too tight" leads. There are some bacon and aragonite speleothems. A pit drops out of this passage into the continuation of the entrance canyon passage mentioned above. The stream pours down a very tight, wet, cold, and unexplored passage 62.6 feet below the entrance.

Junco Cave

Found by Jim Baichtal, Junco Cave is small; but it contains a variety of speleothems, such as moonmilk columns, stalactites, soda straws, and flowstone. The cave has been enlarged by vadose action from drainage of a solution channel nearby. It may be possible that Junco Cave was, at one time, a fairly horizontal phreatic cave which was connected with some of the other caves in the area, such as Winter Wren Cave. Since that time, connecting portions have been collapsed and/or filled with glacial drift and not yet re-opened. Or perhaps the area has drained, much as it is now, through the various glacial periods. Junco Cave ends in fill where the water disappears into the floor. Its length is 59.2 feet and its depth is 22.5 feet.

Dead Mother Cave

Dead Mother Cave is entered through the larger of two entrance pits. It was found by Glen Coville, who was disappointed after finding that the cave did not contain the "Mother of All Rivers" in the area; thus the name. A handline is needed to get to the first level in the cave. A rope is then rigged on wall nubbins (rope pad suggested) to avoid brushing unstable breakdown on the last free-hanging 15-foot drop. The canyon "too tight to follow" marks the end of the stream and accessible part of cave.

Management Recommendations

Because of the high concentration of caves here, the area should be buffered off adequately from timber harvest and road building. The buffer should be large enough to allow for a fringe lost to wind throw. Because of vertical components and presence of speleothems, the location of these caves should not be shared with the general public.
Anyone for Glacier Caving?

After cancelling eight different trips to the caves in the Byron Valley due to a very warm and wet weather, or heavy snowfall, it is finally cold and clear. Please call 333-8766 if you are interested in checking out the caves.

Atop El Capitan Peak
Trip Report
by Kevin Allred

As part of POWIE, we were to spend time up on the El Capitan Peak alpine karst. The Forest Service erected a weatherport structure on plywood decking at about 1700 feet of elevation in the beautiful meadows of the largest polje (uvals) on the mountain. This seemed to be the ideal base camp from which to meet our objectives: a complete survey of Snow Hole, continued survey of Blowing in the Wind Cave, survey of more pits in the area of El Capitan Pit, and dye dumps in El Capitan Pit, Blowing in the Wind, and the polje.

Because of the few personnel available at the time, our first crew consisted of only Pete Smith and myself. Pete is a hard pushing local abalone fisherman who lives with his fine family in Whale Pass. Pete has lived close to the earth in subsistence lifestyle for some years, and so naturally was attracted to the mystery of dark holes and shafts near his home. He had contacted us and wanted to get involved. A short introduction to SRT helped Pete prepare to get up and down drops more safely.

First Go

We helicoptered onto the peak on July 19, and had the pilot make a hovering rope drop at the rocky pass near Blowing in the Wind Cave. The weather was hot, dry, and gorgeous. Wildflowers speckled the luscious doline perforated green floor of the polje.

Our first goal was to survey the entrance pit of Blowing in the Wind. We would then get into the continuing Goes Canyon survey, not completed back in 1989 (see The Alaskan Caver 10(5):9-13 and 11(1):6-8). Our goal seems ridiculous after what happened...

We rigged and cleaned off the drop which turned out to be about 150 feet at an angle of 70 degrees. Near the bottom, another drop of 40 feet led to a side fissure. While sketching the survey, I pointed out a bat skeleton to Pete, who then spotted other larger bones sticking out from nearby floor fill. These appeared very old and were from some kind of large, mean looking carnivore such as a wolverine. We left many going leads and headed back to camp with 440 feet surveyed.

On July 20, we awoke to find our wet hanging clothes now frozen, with a hard frost outside. Seven deer grazed nearby. Back up at Blowing in the Wind, we picked a lead which plunged down several drops until it finally pinched to a very grim, jagged eight-inch-wide slot swallowing a waterfall. While Pete tried to force his body down, I used my helmet to catch as much of the cascading water as possible. Neither of us had drysuits on. It just was not going to go, even though it belled out tantalizingly below.

We backed up to another going lead which led to a similar multidrop canyon. This also became tight, but looked like it would go with a bit more chipping. We ran out of time. On the way out, I studied strange large nodular lumps on the walls of fissures. They appeared to have formed around a center point and were often shattered, as if exploded out from pressure in the middle...frost or gypsum? We hurried out with 360 feet of survey and expectations of returning the
next day, but never had the opportunity. On the way to camp, I sprained my ankle on the rugged karst. When it happened there was an ominous pop, which gave me quite a scare. After limping to camp, we planned what to do.

The next day, I rested the ankle while Pete hiked to the cave, picked up our caving gear, and explored a bit on the karst. He then hiked off the mountain to help with the expedition elsewhere. I entertained myself catching spider specimens for Rod Crawford of the University of Washington and dumped dye in the polje.

On July 22, the helicopter was unable to pierce the newly arrived storm for a pickup. I hiked carefully to Blowing in the Wind and dumped the dye below the entrance drop. A few small white bodied harvestman were collected on the drop. One appeared to be using its front-most appendages to feel its way around. Back at the entrance, a beautiful grouse clucked at me from a boulder. After radioing my intentions, I packed up and hiked off the mountain. Doug Strait and Mark Fritzke kindly met me partway and carried the pack to the road. With me back to tend the children, Carlene was now free to cave.

The Second Go

The last push of the El Capitan alpine karst began midday on July 31. Participants were: 1) Bob Christensen, biologist, a husky new caver and former football player; 2) Steve Lewis, previous expedition member, deer biologist, botanist, mountaineer, and caver; 3) Pete Smith, diver, sailor, sourdough, and super cave pusher; 4) Doug Strait, previous expedition member, electrical wiz, and experienced caver; and 5) Kevin Allred, expedition leader and adventurer.

The first day was dedicated to helicoptering ourselves and gear to the polje in a brief lull between the storms. Forecasts were for foul weather for several days at least. The food supply was awesome; it included bacon, hamburger, fresh vegetables, eggs, canned stuff, gallons of mixed nuts, Steve's homemade wholewheat pancake mix, and enough junk food to put us in a stupor for a month. We finally boarded the helicopter with little tummies full of Hagen-Dazs ice cream! As the chopper dropped off about 700 feet of rope near El Capitan Pit, Doug commented "a nice touch". All of us then hiked up to the rope drop and hauled up some caving gear of Doug, Steve, and Pete. They were to drop the pit on the morrow. There were a couple of deep looking shafts nearby.

The next day, Doug, Pete, and Steve dropped El Capitan Pit (which this year had snow on the ledge) and dumped the dye for Win Wright. Doug was able to swing over to a going wall lead about 150 feet from the bottom. They got several hundred feet surveyed in the new and continuing extension which Pete described as "similar to Blowing in the Wind".

Bob and I picked a lead in Blowing in the Wind for another go, and pushed it to the brink of some couple of pits which we did not drop because of copious vadose water and lack of rope. This portion of the cave was very jagged with steeply sloping fissures—a maze on edge. It seemed like the whole mountain must be hollow. Our survey for the day was 376 feet.

On August 2, Bob and I returned with Pete to Blowing in the Wind. We pushed a new lead just below the entrance drop to avoid wetter passages below, with all the rain input. After some difficult going, Pete led the way down to a large stream course. It quickly transformed into a deep narrow canyon with awkward access along the wider top portions, some 30 feet above the stream. We had passed some nice helictites up to two inches long and were quite muddy from the silty walls by the time we turned around. The two-hour climb to the entrance revealed signs of burnout after too many rainy days and cold pushes. Total survey was 519 feet in 11.5 hours.

Meanwhile, Steve and Doug spent an eleven-hour day surveying 240 feet of the new extension of El Capitan Pit. They are pretty sure that a snowy looking thing hanging high in a 90-foot-high dome is, indeed, snow. It may be over 200
feet below the surface, but a search above ground revealed no sign of any pits with snow! The temperature seemed colder in that dome, and water poured down it. Near the Hanging Snowball of Death Dome, they stopped at the lip of a 70-foot pit, which could take them as deep as the bottom of the main drop.

The next day was meant to be a take-it-easy day. Nevertheless, Steve, Pete and I overdid it with another seven-hour trip in Blowing in the Wind. We surveyed 149 feet, dumped more dye, and photographed the old bones. We found that the dye emerged in another part of the cave, and thus it performed the first in-cave dye trace in Alaska. Back at camp, Doug and Bob were sensible and took it easy. The kerosene heater in the weatherport was being put to good use drying gear.

On our last day, we planned final pushes in both systems. Bob painted war paint under his eyes, and we took all available rope for the stream in Blowing in the Wind. Little by little, Pete rigged the way down as Bob and I followed through more multidrop canyon with additional tributary streams entering. Because of its jagged walls, we named it Razor Canyon. Finally, at the bottom of a waterfall, Pete announced the end of the line...it didn't look good. I had a look and slid through a low, wet crawlway into continued walking passage. The canyon then punched through a six-inch-thick, protruding wall-like dike.

Pete was not feeling well, but hung in and led down a few more drops until we ran out of rope. I used my last handline to get down one more free eight-foot drop to the brink of a black void, where some 50 feet below the canyon continued out of sight! It was taking air. There was cheering at the turnaround, but we still had a big job to haul up 800 feet of rope through some of the toughest cave I have ever seen. We sure went to a lot of work to get less than 400 vertical feet down. Going up, Bob struggled mightily to ascend over fissures and through constrictions with his Texas system. I don't know how he managed it, but the system must have been invented by a one-legged Texan! In the ten-hour trip, we bagged another 302 feet.

Back at El Capitan Pit, Steve and Doug were stopped at the pinned bottom of an 80-foot pit. Another lead opened up below a constriction which might require explosives to pass. Yet another going passage would be practical in drier conditions.

On August 5, the weather broke and we were helicoptered off the peak. These alpine caves will provide potent challenges to cavers, certainly beyond anything which I have thus far experienced.

El Capitan Pit
Prince of Wales Island
Preliminary Report #42
Addendum to Reports #4 and #8
by Kevin Allred and Doug Strait
October 30, 1991

Continued Exploration

On August 1, 1991, a team consisting of Pete Smith, Doug Strait, and Steve Lewis entered El Capitan Pit to dump dye for Winfield Wright, who was carrying out studies in the area. They were able to swing into a wall lead in an eastern alcove 150 feet above the floor of the main shaft. After a horizontal passage of some 40 feet, a series of three drops ranging from 40 to 80 feet leads to the limit of penetration in this direction. While air flow was noted at the top of the last pit (80 feet) this flow dissipates somewhere in the pit. The bottom pinches in two directions.
EL CAPITAN PIT
TONGASS NATIONAL FOREST
PRINCE OF WALES ISLAND
ALASKA
TOTAL DEPTH - 624 FT
INITIAL DROP - 139 FT

TONGASS GULCH PROJECT
TOTAL LENGTH 1099 FT
AUGUST 1990/1991

Legend:
- entrance
- drop
- underground
- surface
- monitor
- drain
- path
- drop entrance
- initial drop
- crossing

Map drawn by Carole Alme

© 1991 by Carole Alme
The most notable feature of this new extension is a high dome approximately 110 feet east of the main pit in which a large hanging block of snow can be seen approximately 90 feet above the floor. Surface features above this point do not appear probable as a source for this snow block. This chamber is known as Hanging Snowball of Death Dome. Total surveyed passage in El Capitan Pit is now 1111.9 feet. It is still 624.9 feet deep.

Remaining Leads

All readily accessible passage has been surveyed. Three leads which may require extreme measures exist. One is a tight water drain below station C12, 30 feet west of Hanging Snowball of Death Dome. The second is a fissure ten feet southwest of C12. The third is an estimated 70-foot-deep pit with a "too tight" restriction ten feet east of C20 and some 40 feet east of Hanging Snowball of Death Dome. Even though no air flow was noted here, this is considered the most promising of the leads. The restriction is eight feet below the top of the pit, and the pit (fissure) can be seen to widen below this point. An attempt to remove the restriction by hammering was unsuccessful due to insufficient room to move above the spot. Use of a shaped charge would be the most practical way to remove this restriction. In lieu of direct placement of the charge by a thin person suspended by their feet, the charge could be maneuvered into position from above by one or more cords.

Fault Contact Pit
Prince of Wales Island
Preliminary Report #48
by Kevin Allred
October 31, 1991

Description

First noticed by a helicopter pilot, the pit is located at the end of a logging spur road high on the southern slope of El Capitan Peak. The location is along a fault between graywacke to the north and limestone to the south. It was investigated and sketched on August 11, 1991, by Tim and Julie Heaton. The blind 30-foot pit contains wood and rock debris. It was probably one of the sinkholes investigated by David Klinger in 1988 while still in virgin timber and found not to go.

Management Recommendations

The road should not be continued over the pit; otherwise, little more can be done to damage it than already has been. There is no need to restrict the location of this karst feature from the general public.
Blowing In The Wind Cave
Prince of Wales Island
Preliminary Report #76
Addendum to Report #11
by Kevin Allred
November 7, 1991

Introduction
Members of Tongass Caves Project spent several days in Blowing in the Wind Cave, continuing exploration and survey.

Biology
All work was done in one pit lead left in 1989. Just inside the entrance, a 150-foot pit ends on a rubble slope. Several abnormally small white bodied harvestman were collected here on a pit wall. One of these appeared to be using its front-most appendages to feel its way around. They have not yet been identified.

Off the bottom of the pit is another drop of 40 feet, which ends in a fissure where two skeletons were discovered. The first is a bat, and the second is a large, old looking, unknown carnivore, thought to be a wolverine. Back at the bottom of the entrance pit, a second bone deposit is scattered in one of several down trending fissures.

New Pushes
Near the bottom of the entrance pit are several leads heading down fissures and canyons. Some have not been investigated, but many hundreds of feet were surveyed. Small streams were encountered and, because of heavy rains at the time, most exploration was ended if it became too wet further down. Razor canyon is a main stream passage with multiple rope drops. At the deepest point surveyed, a total of 800 feet of rope was needed. The canyon continues down out of sight. The cave is now 460 feet deep, and 2894.5 feet long.

Speleothems
Some odd speleothems were found on fissure walls. These are nodular, lumpy growths up to about four inches in diameter which appear to have grown from a central point. Many of these have been shattered, as if exploded from pressure within. The cause could be frost or gyspsum expansion. Some had cracks radiating from the center. Helictites up to two inches long were found just above Razor Canyon. Other minor stalactites and popcorn were seen.

Dye Tracing
Dye was dumped twice in the same location in Blowing in the Wind Cave. The first time, it was found that some of the traps had washed out of springs on the side of the peak, and so the test had to be repeated. Win Wright has not yet discovered which traps were positive. We found that the second dye reappeared in another part of the cave, making this the first in-cave dye trace in Alaska.

Glacier Grotto to be Dissolved!
Well, I hope not; but that's what will happen if there are no people to serve in the various offices which are required to maintain a grotto. Please, if you want to see the Glacier Grotto still be around in 1993, help us come up with at least one nomination for each of the six offices. Currently, we have one for President, one each for the area VPs, and none for Secretary or Treasurer.
BLOWING IN THE WIND CAVE
PRINCE OF WALES ISLAND
ALASKA
TONGASS NATIONAL FOREST

* Sistecos and Compass survey by
Tongass Caves Project
National Speleological Society
July, August, 1989
July, August, 1991

* Total length: 2894.5 feet
Total non-computerized depth: 460.0 feet

KEY
- Dye trace travel
- Drop and depth in feet
- Chimney and height in feet
~ Slope
- Pool
- Stream

Silt
- Breakdown and rocks
- Unsurveyed passage
- Underlying passage
- Surveyed point
- Mouse droppings
- Bolt Placement
- Air
- Too tight

NOTES
1. Waterfall down climbable chimney 3 by 4 feet diameter.
2. Very tight.
3. Down, goes big.
4. Very tight; probably connects with #3.
5. Fine grained sandstone and too tight underlying passage.
6. Pits go, but tight.
7. Pendants.
8. Rig 100-150 foot rope.
9. Domepit goes up out of sight.
10. Pits go estimated 50 feet down.
12. Fissure canyon goes up very tight.
13. Bat skeleton and unknown carnivore bones.
14. Mud passage ends. Floor fissure very deep.
15. Holes connect with upper passage.
17. Lead goes 20 feet up with trickle of 2 gallon/minute...dye emerged.
18. Goes very tight down.
19. Goes up very tight and wet.
20. 50-60 foot drop thru jagged 10 inch wide slot. Need drysuit and hammer.
21. Canyon widens past tight spot.
22. Boulder plugged from above.
23. Goes a long ways down.
24. Need rope; goes 30 feet down to stream.
25. Approx. 80 foot waterfall probably connects with #24.
26. 2 leads.
27. Continues 2 by 3 foot tube/pit a long ways.
28. Waterfall heard upstream, but low and wet, issues air.
29. Bridge 25 feet above floor.
30. Pool.
32. 2 inch holes/trails.
33. Canyon plunges through pipe.
34. Water comes down dome.
35. Razors Edge re-belay. Dome pit.
36. Razor Canyon taking air.
37. Goes above an 8 foot climb. Walking passage with small incoming stream.
38. Multi-drop pits swallow stream through hole in floor.
40. 15 foot blind pit.
41. Overhanging wall has nodular growths.
42. Pool with stream slot...dye dump.
43. Going canyon passage.
44. Vents.
45. Popcorn.
46. No air or any strength.

PROFILE
Mag. West

Map drafted by Kevin and Carlene Allred

© 1991 by Kevin Allred
Area Grotto Meetings

- **SouthCentral Area Meetings**

 SouthCentral Area Meetings usually are held at 7:30pm the fourth Wednesday of each month. However, we currently are in need of a regular meeting place! Please contact Jay Rockwell at 277-7150 if you know of a place which could be a potential regular monthly meeting location in the Anchorage area. Meanwhile, attempt will be made to pass the word on as soon as anyone knows where our next meeting place will be.

- **SouthEast Area Meetings**

 SouthEast Area Meetings will be held at 7:00pm on the first Monday of each month. The meeting place is the Alaska Public Health Service Building, 3054 5th Avenue, Ketchikan.

Northern Area Meetings

Northern Area Meetings are held in Fairbanks by demand; contact Mike Mauser at (907) 456-6953 for more details.

DUES are DUE!

It's that time of year again—time to show your support and appreciation for all the news and information which has been collected and distributed via The Alaskan Caver during the past year. If your mailing label shows a 92 instead of a 93, it's time for a subscription renewal, as you have received your last issue until you renew. Renew now, so you won't miss a single exciting issue of your favorite action-packed newsletter. Besides, we need the funds in order to produce this newsletter on into 1993! So renew now; say "yes". Just do it!

Glacier Grotto

2944 Emory Street
Anchorage, Alaska 99508-4466

Forwarding and Return Postage Guaranteed

Address Correction Requested